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A B S T R A C T

Pulmonary cancer is considered as one of the major causes of death worldwide. For the detection of lung cancer,
computer-assisted diagnosis (CADx) systems have been designed. Internet-of-Things (IoT) has enabled ubiqui-
tous internet access to biomedical datasets and techniques; in result, the progress in CADx is significant. Unlike
the conventional CADx, deep learning techniques have the basic advantage of an automatic exploitation feature
as they have the ability to learn mid and high level image representations. We proposed a Computer-Assisted
Decision Support System in Pulmonary Cancer by using the novel deep learning based model and metastasis
information obtained from MBAN (Medical Body Area Network). The proposed model, DFCNet, is based on the
deep fully convolutional neural network (FCNN) which is used for classification of each detected pulmonary
nodule into four lung cancer stages. The performance of proposed work is evaluated on different datasets with
varying scan conditions. Comparison of proposed classifier is done with the existing CNN techniques. Overall
accuracy of CNN and DFCNet was 77.6% and 84.58%, respectively. Experimental results illustrate the effec-
tiveness of proposed method for the detection and classification of lung cancer nodules. These results demon-
strate the potential for the proposed technique in helping the radiologists in improving nodule detection ac-
curacy with efficiency.

1. Introduction

Ubiquitous internet access has opened the door for the biomedical
researchers to obtain the dataset as well as the latest techniques
available online and use them for developing improved health care-
systems. Health-related Internet of Things (H-IoT) [1] is advancing by
each passing day and innovative ideas are surfacing more frequently,
targeting the health sector especially the detection and diagnosis of
disease. Recently the advancements in IoT technology have made it a
popular multidisciplinary research topic both in academia and industry
particularly in healthcare sector [2–4]. Previously the usage of In-
formation and communication technologies in healthcare sector was
limited and often considered as a risk but nowadays ICT is offering
promising medical services to patients, mostly referred to as e-health
which includes electronic record systems [5], personalised devices for
diagnosis, etc. Traditional healthcare systems are frequently being re-
placed by the coherent and ubiquitous ICT enabled solutions mainly

because they are able to deliver high quality patient-centred healthcare
services. Rapid proliferation of smartphones and wearable devices
based on IoT enabled technology [6,7] are evolving healthcare from
conventional system towards personalised healthcare system. Suc-
cessful utilisation of IoT enabled technology in (H-IoT) will enable ef-
ficient and reliable preventive care, low cost, enhanced patient-related
practice and improved sustainability [8,9].

Pulmonary cancer (commonly known as lung cancer) is one of the
most aggressive cancerous disease which results in mortality of over
70%, roughly one quarter of the deaths caused by all types of cancers.
Pulmonary cancer is considered to be difficult to cure as the early di-
agnosis is crucial to save the patient. Most of the lung cancer patients
are diagnosed when the disease is at an advanced stage. However, an
early detection of pulmonary cancer could increase the chances of cure.
Detection of pulmonary cancer in early stages is difficult mainly be-
cause there is lesion growth which is of dime-size within the lung called
nodule. The first step towards the cure of lung cancer is detection of
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lung nodules in its early stage thus the treatment could be started before
it becomes malignant. Conventional method for detection of lung
cancer is mass screening process by using X-ray films. Small lung cancer
nodules are not easily detected using X-ray at early stage because of
organ’s shadow and the bone’s overlapping. Therefore, these lung no-
dules remain undetected by X-rays and are detected only by
Computerized Tomography (CT) Scan. CT-Scan revolutionized medical
image processing by presenting 3D imaging. In the beginning CT-Scan
slices were obtained and reconstructed to be further imaged on film.
Recent CT scanners are able to reformat this large amount of volumetric
data in various planes as well as visualize using high resolution volu-
metric (3D) representations. These technological innovations improved
lung cancer detection and diagnosis, using CT images, by the help of
various computer assisted detection systems (CADe). With the ad-
vancement in the field of internet-of-things (IoT) [10], the medical
imaging equipment is also accessible through remote sensors over the
internet. The remote connectivity of these CT-Scan imaging devices has
enabled the health sector to introduce new methods for the diagnosis
and detection of lung cancer.

Internet of Things technology used in the field of healthcare is often
termed as medical Internet of Things (mIoT). To address the challenges
encountered in medical and health care information, mIoT provides
advantages in the recording of patient data, its analysis and use of ac-
quired information for diagnosis [11]. Revolution in mIoT is re-
designing health care sector with promising state-of-the-art IoT-based
health care solutions [12]. With the use of IoT-based health care
methods, the diagnostic and monitoring functions performed by phy-
sicians today can be offset to computation methods and algorithms.
Improvement in diagnostic accuracy by physicians could likely be as-
sisted by use of different deep learning models [13]. In case of pul-
monary cancer, the follow-up check-ups of the patients are mandatory.
These follow-up check-ups comprised of CT-Scan of the patient and the
physiological information. Deep learning model are trained using these
CT image data to get the characteristics of pulmonary cancer nodules,
and then screen the images for nodules using the trained model. The
obtained results are provided to the radiologists to make a decision for
the diagnosis of the patient [14,15]. The conventional diagnosis process
is time consuming as the radiologist marks the location of the lung
nodule on the other hand the automation of this nodule detection using
different computer assisted detection (CADe) tools enable fast diagnosis
with higher accuracy. The radiologists use CADe as a second opinion for
decision on the pulmonary cancer stage diagnosis.

Our proposed technique is based on the deep fully convolutional
neural network (FCNN) for initial classification into normal CT-Scan
image and patient’s CT-Scan image. Nodules are detected by using the
pre-processed input images for the training of the deep FCNN.
Afterwards each detected nodule is classified into four cancer stage
based on the malignancy of the detected nodule and the metastasis
information recorded by using various sensors. The performance of
proposed work is evaluated on six different datasets with heterogeneous
scan parameters. The performance of proposed technique was eval-
uated by comparing the results with the existing state-of-the-art CNN
technique TumorNet [16]. Experimental results showed that the pro-
posed technique can be used for the detection as well as classification of
lung cancer nodules. Section 2 describes the related work. Section 3
presents the proposed method in detail and based on experimental re-
sults (Section 4), the conclusion is presented in Section 5.

2. Related work

Recent researches have shown that deep neural networks have great
potential for CAD application involving volumetric medical data [17].
Few of these studies have used neural networks for detection and di-
agnosis of pulmonary nodules [18], among which ensemble methods
using neural networks have shown the best results [19]. Artificial
Neural Networks (ANN) method is also used for the nodule detection

[20,21]. This research work was based on the difference-image tech-
nique in which the pulmonary nodules were enhanced and the normal
background structures were suppressed. Afterwards thresholding tech-
nique was applied and lastly the nodule candidates’ image features
were quantified. Rule-based method and ANN were used simulta-
neously to eliminate the FP results.

Feed forward NN was also used by [22] for classify nodules in X-ray
images with limited features such as shape, perimeter and area. In re-
cent years, convolutional neural network (CNN) has become a bench-
mark in the field of CADx systems. CNN is used to detect lung nodule
and the results are promising [23]. There are two main methods of
using CNN, either the researcher can model their own CNN architecture
or they can use off-the-shelf CNN for acquiring the features [24].
DFCNet takes classification to a whole new level, using the dense pre-
diction by considering the convolution nets as fully convolutional and
fine-tuning is done in such a way that the predecessor layer sends the
learned features to the current convolution layer. FCNN are different
from the existing CNN [25] as they only used small convolutional
network and the learned features were not used as pre-training by the
successor layer [26]. In our research work we used fully convolutional
NN not only for detection of the nodule but also for the classification of
the lung cancer stage.

3. Proposed approach

The Internet of Things (IoT) refers to use of sensors that can transmit
the gathered information over the internet. For computer-assisted de-
cision support system in pulmonary cancer detection we used four main
steps: data recording using sensors and CT-Scan Images, collection of
obtained dataset over the internet, training the model using the ob-
tained dataset and diagnosis decision making based on trained model as
shown in Fig. 1. This decision is further provided to the radiologists for
assisting them in improved diagnosis decision for pulmonary cancer
stage classification. Pulmonary cancer has four stages. Stage-1 nodule
size is smaller in size about> 3mm and ⩽20mm is restricted to the
lungs. The nodule size of Stage-2 pulmonary cancer is within the range
of 21–30mm and is spread to surrounding lymph nodes. Stage-1 and
Stage-2 are early stages of cancer. In Stage-3, the cancerous cells are
extended to other nearby organs and the size of nodule is approximately
between 30mm and 70mm. In the last stage (Stage-4) of pulmonary
cancer, the nodule size is more than 70mm and is spread outside the
lungs to other vital organs of body. Stage-3 and Stage-4 are often re-
ferred to as advance Stages of cancer.

For the first step of our computer-assisted diagnosis (CADx) system,
the sensors attached to patient’s body forming body area network
(BAN) which collects comprehensive physiological information and
uses gateways to forward that data to network (see Figs. 2–4).

Physiological symptoms of patients can be constantly monitored
remotely using wearable IoT device. Depending on the stage of pul-
monary cancer, symptoms of lung cancer differs [27]. Pulmonary
cancer symptoms are mostly visible when the cancerous cells are spread
out in the body. In some cases, early stages (Stage 1 and 2) also have
symptoms. Most common symptoms for early stages of pulmonary
cancer are chest pain; cough, rust-colored spit (phlegm), body-weight
loss, breathlessness, fatigue, infections (pneumonia/bronchitis),
wheezing, difficulty in swallowing, and swelling of feet [28].

In case, there are malignant nodules due to which the cancer is
spreading to distant organs then symptoms such as backache, seizures,
dizziness, numbness, yellowing of skin (if its spread to liver), appear-
ance of lumps near body surface (neck/collarbone), blood pressure,
hypercalcemia commonly known as high blood calcium levels can cause
constipation, nausea, vomiting, pain, fatigue, anxiety, confusion, and
various nervous system problems. These symptoms are not necessarily
due to pulmonary cancer but research studies show that these can be
caused by pulmonary cancer. The probabilities of occurrences of phy-
sical symptoms for different stages of Lung cancer [29] are shown in
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Table 1.
According to Table 1, the common symptoms for all stages are body

weight loss (BWL), Breathlessness (BLN), Heart Rate (HR), High Body
Temperature (HBT), Blood Pressure (BP), Insomnia (INS), Hy-
percalcemia (HC) which is the cause of pain, fatigue, constipation, etc.
For acquiring these metastasis features for the stages classification,
sensors were used. The data collection for the metastasis features was
done by using the IoT based personalized health-care systems both
clinical system and remote monitoring system.

Shanghai Hospital No. 6 provided the patients metastasis informa-
tion (BWL, BLN, HR, HBT, BP, INS, HC) by non-invasive IoT-based
sensors for gathering physiological data that was stored on a Cloud for
instant updating. In few cases, remote monitoring was used to access
health monitoring of patient using sensors. Multiple sensor nodes were

connected to Internet which was used to gather information by remote
monitoring devices [30].

This research work is targeted to find a method to assist with the
early detection and stage classification of lung cancer, relieving doctor’s
burdens, and providing better treatment options for the patients. We
proposed a Computer-Assisted Decision Support System in Pulmonary
Cancer by using the deep learning model DFCNet and metastasis in-
formation obtained from MBAN (Medical Body Area Network) which
are lower power network comprising of control transmitter, sensor
devices worm by the patient which receives the control commands in
process of measuring physiological parameters for diagnostic purposes.
The recent progress in the 5G Technology will be useful in recording the
real-time physiological data of each patient and its storage as well as
processing [31]. Vendors such as Philips, Qualcomm are manufacturing

Fig. 1. Overview of the four stages of computer-assisted decision support system.

Fig. 2. Communication between the devices for computer-assisted decision support system.
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MBAN devices which are expected to send real-time physiological in-
formation of patients to physician onto their smartphones and PCs.
These MBAN devices will have a specific spectrum range of
2360–2400 Hz band. This specific spectrum range ensures that other
wireless devices could not interfere with MBAN transmission. It is sig-
nificant that there is no interference from other wireless devices when
MBAN devices are sending real-time physiological information of pa-
tients to the physicians.

Due to unavailability of such devices at the time of this research
work, we mainly used sensors on the clinical healthcare centre (in our
case it was Shanghai Hospital No. 6). We also used remote monitoring
devices (smartphones applications) for recording the metastasis para-
meters. Wearable IoT (WIoT) is an infra-structure that interconnects

wearable technology to exchange data with wearable sensors and to
send data to cloud. Bluetooth is used for exchanging data with sensors
whereas WIFI is used to send the recorded data to Cloud for further
processing.

For our proposed work, we used monitoring devices both in form of
wearable devices and smartphone applications. Information for in-
somnia parameter was gathered by recording the sleeping-pattern by
the help of MI-Band (wearable device). Breathlessness physiological
information was obtained by recording the respiratory rate/breathing
index using Rejuven’s Rejiva. Heart Rate was obtained by using the
smartphone applications named Runtastic heart rate/Instant heart rate
application. Body Temperature was recorded by the help of a smart-
phone application Finger print thermometer. Blood Pressure was ac-
quired using wearable BP sensor and body weight loss by health as-
sistant application.

Fig. 3. Communication between the sensor nodes.

Fig. 4. Communication among wearable devices.

Table 1
Symptoms prevalence for lung cancer stages.

Symptoms Stage 1 (%) Stage 2 (%) Stage 3 (%) Stage 4 (%)

Body weight loss 35–631 45–60 91–94 93–99
Breathlessness 3–55 40–87 90–95 97–99.5
Irregular heart rate 11–62 18–73 92–96 92–99
High body temperature 55–65 31–78.7 93–97 94–98
Blood pressure 29–43 63–87 89–92 90–93
Pain 27–44 29–62 34–77 41–81
Depression 18–32 22–47 37–77 46.5–83
Anxiety 36–48 44–64 61–75 80–94
Fatigue 17–38 27–44 68–80 77–88
Insomnia 38 49–61 75–88 87–91
Constipation 11–20 19–23 27–44 40–60
Anorexia – – 35–67 39–76

Minimum-maximum range of prevalence (%).
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Although the remote monitoring devices are more convenient yet
they are not accessible to all patients therefore for the stage classifi-
cation we used the data collected by the clinical healthcare system. The
benefit of connecting these sensors with cloud is to use Electronic
health records (EHRs) for further training of the FCNN model. Different
datasets was used for training of the proposed work. The dataset was
from 6 different sources LIDC-IDRI database [32], RIDER [33], LungCT-
Diagnosis [34], and LUng Nodule Analysis (LUNA) 2016 Dataset [35].
These are publicly available in the The Cancer Imaging Archive (TCIA)
[36], and the pulmonary nodules have been fully annotated by multiple
radiologists. Radiologists manually segmented the lung nodules with
size of 3mm or more.

For the variations in the lung CT images, we used the LISS database
which comprises of 9 different categories of CT imaging signs of lung
diseases. These imaging signs are detected and labelled (region label-
ling and class labelling) by the radiologists [37]. LISS database com-
prises of 271 Lung CT scans while 677 abnormal regions in these CT
Scans which are sub-divided into nine classes (Lobulation L, Calcifi-
cation C , Cavity and Vacuolus CV , Spiculation S, Plueral Indentation
PI , Air Brochogram AB, Bronchial Mucus Plugs BMP, Obstructive
Pnemonia OP, Grand Grass Opacity GGO) of CT imaging signs of pul-
monary disease. For the DFCNet training, the CT-Scans of all the classes
were used. Table 2, shows the details of each class of LISS dataset for
training along with its indication in terms of malignancy in the nodule.

Radiologists have stated that more than one type of class can exist in
a single nodule therefore they have to consider all the signs and predict
whether the nodule is benign or malignant. The same idea is considered
here to train the DFCNet using different samples of these classes and
predict the malignancy of the nodule in given CT-Scan. There was an-
other dataset that was not used in training phase, SPIE Challenge
Dataset [38], which was not annotated in order to test whether the
DFCNet is able to detect nodule and non-nodule without annotations.
There was information about location on the largest cross-sectional area
of nodule CT-Scan which was only used for extracting the CT-Scan slices
and pre-processing of these images was necessary. The workflow of the
proposed work is shown in Fig. 5.

The input of the DFCNet was originally 512 ∗ 512 slices with one
colour channel (grey level 0–255). In order to prepare the desired input
of 100 ∗ 100 ∗ 3, all of the images were resized to attain the 100 ∗ 100
size. The grey level channel was duplicated into two other colour
channels to provide the 3 required colour channels to the DFCNet pre-
trained convolution layer (see Fig. 6).

3.1. Pre-processing

Various filters could be used for enhancing the images. We used
low-computational Gabor filter [39] for the enhancement of the CT-
Scan images before using these CT-Scan images for segmentation of
region of interest.

3.1.1. Lung Region-of-Interest Extraction using the thresholding method
Thresholding is the most commonly used technique for Region-of-

Interest (ROI) Extraction. In this technique, the object-background is
selected and then threshold is obtained which divides the image pixels
into either object or background. In this way, the ROI is extracted from
the background and which is used for the training of the DFCNet.
DFCNet detects whether the given voxel is likely to be a nodule or not,
based on the spatio-temporal statistics around it. A nodule can range
from 3 to 28 pixels wide at its largest size, and spans 3–7 slices typi-
cally. For every nodule 48 unique perspectives were selected, which
enlarged the initial dataset by 48 times. Furthermore, random crop of
image slices was done for each slice which resulted in increasing the
dataset, for instance the initial dataset of 932 pulmonary nodules of
LIDC-IDR was increased to 465,504 training image-slices.

3.2. Deep neural network architecture

Convolutional neural networks are advance version of the multi-
layer perceptron architecture and designed specifically for 2D structure
image Use of tied weights as well as local connections across the layers
of a CNN results in producing invariant features. Basic architecture of
CNN comprises of multiple convolutional and subsampling layers at
fully connected layer. Input image I having dimensions × ×n n Ch
(height×width× channels, i.e. =Ch 1I (grey scale 0–255)). Within a
convolutional layer of CNN, there are filters K of size × ×m m ChF ,
where <m n and ⩽Ch ChF I . The kernel convolution and input image I
generated features F of size − +n m 1. For subsampling of each map,
there is a pooling layer ×p p ( ⩽ ⩽p2 5) which uses mean and max
values.

3.3. Implementation details

For the initial implementation of DFCNet, the CT-Scan images of 18
patients were collected from Shanghai Hospital No. 6. These CT-Scan
images were annotated and the nodules were segmented manually by
the radiologist. Out of these 18 images, 11 were used for training of
CNN whereas 7 were used for testing.

CT-scan images were patch-wise analysed for training of CNN
afterwards subsampling process analysed extracted image patches for
obtaining the ROI (region-of-interest). These sampled patches were
used for training CNN. The size of each patch J was ×32 32, which was
enough for extracting meaningful information from J . Large size pat-
ches are avoided as they can contain unnecessary information and
therefore increase the complexity.

The CNN architecture comprises of 7 convolution with Parametric
ReLU Rectified Linear Units (PReLU) [40] with =α 0.25, 7 max-pooling
layers (Mpooln = …n 1, ,7), 7 batch normalization layers
( = …Bnorm n 1, ,7n ), and two dense layers Conv2048 with Leaky Rectified
Linear Units (LreLU) with =α 0.01, a final 1000-dimensional dense
layer, deconvolutional layer Deconv8 with a Softmax classifier (large
margin softmax loss) on top. If the value of α is fixed and small then the
PreLU used with convolutional layers will become the Leaky ReLU
(LreLU) in [41]. The main purpose of using LreLU is to avoid zero
gradients. All convolutional layers (Conv Conv Conv, ,64 128 256) use 3×3
sized filters with stride of 1 except for the last three convolutional
layers. The first Conv4096 uses filter size of 7 while the other Conv4096 and
Conv2 uses filter size 1. As these convolutional layers follow the pattern
of linear layers applied to pixels of input image I therefore they enable
the NN to be fully convolutional. Conv2 assigns a score for both of the
classes for each given pixel. Max-pooling is performed using the
window of size ×2 2 with stride of 2. The deconvolutional layer
Deconv8 uses filter size of 16 with a stride 8. Afterwards resultant image
is centre-cropped to 2×128×128 before the softmax layer. Dropout
regularization was done using dropout 25% on the convolutional layers
(Conv Conv Conv, ,64 128 256) while dropout 50% for both Conv4096

Convolutional layer considers the local regions of I and the neurons
connected to this region to obtain the output. The set of learnable filters
were the basic parameters for the convolutional layer. After each

Table 2
Nine classes of LISS database for training of DFCNet.

LISS database
classes [37]

Total number
of CT-Scans

Training CT-
Scans

Testing CT-
Scans

Sign of malignant
or benign nodule

GGO 25 17 8 Malignant
L 21 14 7 Malignant
CV 75 52 23 Malignant
PI 26 17 9 Malignant
AB 22 19 7 Both
C 20 15 5 Both
OP 16 11 5 Both
BMP 29 20 9 Benign
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forward pass, filter’s 2D activation map is generated by sliding filter
over the input volume. This is repeated to obtain the complete output
volume. There are few hyperparameters required by each layer; filters
K , stride S, receiver field R, spatial dimensions D and zero padding Z .
The output volume can be calculated as:

= + − +W D W D R Z
S

( ) 1 ( ) 2 )
O

I
(1)

All convolutional layer use zero padding =P 1, except for the first
layer, which uses zero padding of 11 to avoid reduction of size after the
max-pooling phase. Down-sampling along the spatial dimensions d is
done in the pooling layer. Pooling layer uses max operation and resizes
each input slice spatially. Pooling layer required volume of input
(weight, height, depth) × ×w h dI I I and other hyperparameters such as
stride S, receiver field R, spatial dimensions D. The purpose of pooling
layer within the network is avoiding over-fitting, parameters reduction
and overall fast computation of DFCNet.

Last layer output is linked to the softmax layer which distributes the
given input into two classes (nodule and non-nodule). Softmax function
is applied to all the pixels one by one. For each given pixel, softmax
function assigns two scores, one for each class (nodule and non-nodule)
to provide class probabilities (pn and pnon). These class probabilities (pn
and pnon) are transferred to the large-margin loss layer [42]. In other
words, this layer is a combination of softmax layer followed by the large
margin softmax loss layer. DFCNet was trained for 50,000 steps, with
16,384 members ( ×128 128 pixels) per mini-batch. The performance of
DFCNet depends on the network hyperparameters initialization. As
these hyperparameters are initialized randomly therefore the perfor-
mance can vary even if these hyperparameters are exactly the same. In
order to avoid this wide variation in the performance with same hy-
perparameter, the model is trained multiple times with same

hyperparameters to obtain the optimized performance and normalize
the input image I to each layer using the batch normalization tech-
nique. Batch Normalization [43] was applied to convolutional layer of
the network. The normalized activations ̂a distribution mean value is
expected to be 0 while the variance is expected to be 1. Once the
DFCNet has been trained, we use the normalization function:

̂ = −
+ ∊

a a E a
Var a

[ ]
[ ] (2)

If ∊ is neglected in the training of DFCNet then the normalized ac-
tivations ̂a has variance 1 and mean value of 0. The unbiased variance
estimate could be used as, = −Var a E σ[ ] · [ ]b

b b b1
2 , where the mini-batch

size of b is over-trained and the sample variances are represented as σb
2.

During the training, the means and variances are fixed therefore we can
consider the batch-normalization as a linear transform which is applied
to each activation step.

In the large margin loss layer had a total loss equal to the average
loss per pixel in I . Since the size of the nodule is 3 mm or above,
therefore it comprises of approximately 2.5% of the input image I
pixels. Therefore, in the loss L equation, the nodule pixels are con-
sidered to be 0.975 and the non-nodule is considered to be 0.025. For
improving the performance on the testing dataset, the regularization
weight of was used.

∑ ∑= ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

= =

L L L w0.975 0.025i
i n

i
j non

j reg
(3)

For the given pixel (i) of image I , the loss will be 0 (non-nodule Class
Cnon) or 1 (nodule Class Cn). The equation

= − ⎛

⎝
⎜

⎞

⎠
⎟+ ∑

L logI
e

e e

fi xi θ fi
fi xi θ fi j

f j xi θ f j

‖ ‖‖ ‖

‖ ‖‖ ‖
{0,1}

‖ ‖‖ ‖cos gives the score for each class for

ROI BASED SEGMENTATION CLASSIFICATION USING

Nodule Class: 
Malignant or 

Benign 

Non-Nodule 
Class

IMAGE PRE-PROCESSING

Fig. 5. Pipeline of proposed work consisting of three prominent phases: (a) Pre-processing, (b) deep neural network, and (c) classification.

Fig. 6. Net architecture of DFCNet.

A. Masood et al. Journal of Biomedical Informatics 79 (2018) 117–128

122



given pixel.

3.4. Learning

Any model using Batch Normalization can be optimized either by
using the Stochastic Gradient Descent (SGD), or batch gradient descent
(BGD) with a mini-batch size >b 1 [44]. Normally SGD works better
when the training data does not contain many subjects. For the lung
nodule dataset, the SGD was used momentum of 0.9. Each convolu-
tional layer was initiated by the weights proposed by Long et al. [26].
For each pixel of input image I , the weights can be considered as fea-
ture set generating method which is used by the DFCNet for learning
the features to do classification. The mini batch size b was considered to
be ×128 128. The learning rate λ was 1e−4, and ADAM update rule
with learning rate of 1e−6 is switched when the error plateaus. Weight
decay regularization wreg of 0.0005. Deconv8 was initialized with bilinear
interpolation weights. The learning rate λ for deconvolutional layer
Deconv8 was 0. Equal number of positive (containing nodule) and ne-
gative datasets (containing no nodule) for each batch were used to train
the DFCNet in the training step. Random selection of the positive
(containing nodule) half and negative half datasets (containing no no-
dule) was done for each batch samples. These datasets were shuffled
prior to each of the SGD iteration in order to ensure that there is no
overfitting case. The DFCNet is trained to get the probability of an
image belongs to nodule or non-nodule class. As there are multiple CT-
Scan slices belonging to a single patient therefore the adjacency rejec-
tion method is used to minimize the repetitive nodule detection and
maximize the probability of detection. Each network was trained for
50,000 iterations which are equal to approximately 120 epochs of our
training dataset.

During the training phase, the batch normalization is applied to the
network after convolutional or dense layers i.e. before the non-linearity
while in the testing phase the batch normalization is applied to the
network using a pre-defined sample mean and variance. During the
training process for the nodule and non-nodule classification, this
problem occurred. The reason being random hyperparameter in-
itialization, the validation accuracy of our model was reduced. Later by
adding batch normalization layers after each convolutional layer, this
issue was mitigated.

3.5. Data augmentation

Data Augmentation is a technique which is used to overcome the
limitation of dataset overfitting. Due to limited training dataset labelled
by radiologists, nodule classification step of DFCNet was compromised.
To improve the classification of nodule, data augmentation techniques
such as rotation about a fixed angle, random translation, spatial de-
formation of the training dataset was done in order to mitigate the
problem of limited labelled dataset. DFCNet further used the enriched
training dataset. With enhanced dataset, DFCNet was well-trained on
the data features and learning parameters. The main reason behind
using the data-augmentation techniques was to ensure the equal
number of images for each class.

3.6. Classification

Image input I is classified afterwards a DFCNet uses the output
image O in which nodule is detected ( ∈O Cn) and then it is classified as
stage of the nodule T T T, ,1 2 3 and T4. The nodule images are fed into the
DFCNet which will have four classes (T T T, ,1 2 3 and T4), each class will
provide the probability score for each input. During the testing phase,
priority ranking technique is used to assign input image patch (voxel) to
one of the four categories on the basis of its classification scores from
each class. DFCNet assigns probability to each image patch for each of
the four cancer stages (Stage T T T,Stage ,Stage1 2 3 and Stage T4), respec-
tively indicated by p p p, ,T T T1 2 3 and pT4. The probability of these four

stages is a combination of average diameter, diameter range; morpho-
logical features such as volume, density, perimeter, area, energy,
homogeneity (sphericity, texture); high level imaging signs of GGO, L,
CV, PI, BMP, C, OP and AB [37]. All these features combined together
to give the prediction score for four stages of lung cancer
( )p p p p, , ,T T T T1 2 3 4 . Table 5 shows the details of these features for the stage
classification of the nodules.

Algorithm 1 (Priority Ranking Decision).

Input: Classification scores from each class (T T T, ,1 2 3 and T4)
Output: Label LxI for given pixel xI

1: procedure PRIORITY RANKING DECISION(Score)
2: if ∈x CI n (Nodule Class)
3: if pT4 >=0.5 then
4: LxI ← Stage T4

5: endif
6: if pT3 >=0.5 then
7: LxI ← TStage 3

8: endif
9: if pT2 >=0.5 then
10: LxI ← TStage 2

11: endif
12: if pT1 >=0.5 then
13: LxI ← Stage T1

14: endif
15: endif
15: endprocedure

Classification of nodules into different stages is done in hierarchical
manner i.e. T T TStage Stage Stage4 3 2 and Stage T1. The reason behind
this is that the malignant stages ( TStage 4 and TStage 3) have relatively
wide range of diameter range with higher density values. If the prob-
ability of the given image patch is high for the malignant stages then
the image patch (voxel) is marked as TStage 4 nodule. If the DFCNet
gives positive classification for more than one nodule stage then the
ranking is done on the basis of priority. The highest priority is given to
the TStage 4 while TStage 1 has the lowest ranking. This method im-
proved the results of classification of nodules and overcome the pro-
blem of multiple positive classifications for one input.

3.7. Performance evaluation

In case of classification techniques, receiver operating character-
istics (ROC) curves or area under the curve (AUC) are used as evalua-
tion parameters. AUC represents the probability that the given sample
image will be classified correctly. The correct classification of the no-
dule and non-nodule is the objective of this research work.

The basic performance evaluation metric used for this proposed
work is Dice Coefficient (intersection over union). Dice score for given
prediction is calculated by counting total pixels predicted as nodule
both by the DFCNet and radiologists, divided by the sum of nodule
pixels predicted by the DFCNet and radiologists.

= ∩
∪

Dice Score P P
P P

2| |FCNN Rad

FCNN Rad (4)

where PFCNN is the set of pixels considered as the region of interest
(ROI) in the prediction and PRad is the set of pixels considered as ROI in
the annotation done by the expert radiologists. Dice score values ranges
between 0 (no match) and 1 (perfect match). Dice score is compara-
tively better than the accuracy metric as the accuracy is tend to be
higher for all images because of the non-nodule pixel prevalence.

The median Dice score of the nodule detection was approximately
91.34%. As there were four radiologists for the annotation of the given
dataset thus the multiple-radiologist repetition was 86%. Fig. 8 shows
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the comparison of the existing work with the proposed research work.

4. Experimental results

The proposed research method is evaluated using the different da-
tasets, LIDC-IDRI database, RIDER, LungCT-Diagnosis, and Lung
Nodule Analysis (LUNA) 2016 Dataset. These are publicly available in
the The Cancer Imaging Archive (TCIA), and the pulmonary nodules
have been fully annotated by multiple radiologists. Expert radiologists
drew outlines for the lung nodules with size of 3mm or more.

Another dataset that we used specifically for testing is SPIE
Challenge Dataset which was not annotated in order to test whether the
DFCNet is able to detect nodule (malignant or benign) and non-nodule
without annotations. There was information about the location on the
largest cross-sectional area of the nodule CT-Scan which was only used
for extracting the CT-Scan slices and pre-processing of these images.
SPIE-AAPM-LUNGx does not have any detailed information about the
presence of nodules and thus it was considered to be real life scenario
where the patient’s CT Scan is to be used to detect the nodules. For the
training of DFCNet, only 22 were used whereas 46 were used for
testing. There was one CT Scan in which the nodule location was am-
biguous therefore this particular CT-Scan was not used.

The dataset was retrospectively collected from the radiology de-
partment clinical practice Shanghai Hospital No. 6 considering the se-
lection criteria (size to be within the range of 3–30mm). These CT-Scan
images were annotated by the radiologist and the stage of the lung
cancer was diagnosed. For the training 11 CT-Scan dataset were used
(10 lung cancer patient dataset and 1 healthy person dataset) while
remaining 7 were used for testing. The testing dataset from Shanghai
Hospital No. 6 includes 6 lung cancer patient dataset and 1 healthy
person dataset.

In case of the RIDER and LungCT-Diagnosis, we used those lung CT
scans which contained pulmonary nodules to evaluate the proposed
method. All of the annotated pulmonary nodule segmentations are
used. Pulmonary nodules’ diameter ranges from 3 to 30mm. Each lung
CT scan has approximately 200 slices while each slice comprises of
512×512 pixels (size of pixel is about 0.5–0.76mm), and the re-
construction interval is about 1–3mm. The nodule candidates are
considered as nodules or non-nodules using annotation provided by
chest radiologists. The statistics of the dataset used in training and
testing phase is given in Table 3.

In the first step for enhancing the images, Gabor filter was applied
on the CT images. For segmentation section, the images that have
passed from enhancement step, were segmented by region growing
algorithm, thus lung region or (ROI) is extracted. The processes that
were applied on CT lung images are shown below in Fig. 7.

After pre-processing of the CT-Scan images, the ROI are extracted
and the DFCNet is trained using these lung CT image patches. The pre-
processed images were fed to the DFCNet for training. Each of the da-
taset was divided into two parts, training dataset and testing dataset

except for the SPIE Challenge dataset as there was no annotation pro-
vided. The overall accuracy, sensitivity, specificity and false positive
(FP) rate were calculated both for the existing CNN approach and the
proposed DFCNet method. There false positive results were observed in
the classification due to the airways and the blood vessels which appear
to be a nodule during local observations. In order to reduce the false
positive (FP) detection, we used an elimination method [45]. This
method considers the detected nodules and if the distance of the can-
didate nodule to any nodule is less than 3/2 of the radius of the de-
tected nodule or greater than 2/3 of the radius of the nodule then it is
considered as potential nodule, it is marked. If after re-training, it is
again detected to be a potential nodule then it is a true positive result
else it is a false positive result. Out of 4247 potential nodules only 3571
were classified as true positive results by the DFCNet. The true positive
TP results detected by CNN was approximately 2984 (83%) while TP
detected by DFCNet was 3179 (89%). DFCNet outperformed the CNN
method. The overall sensitivity of CNN and DFCNet was 74.21% and
80.65%, respectively. The performance evaluation of DFCNet and CNN
on different dataset is provided in Table 4.

During the training phase, the training loss (LossT) decreased as
training iteration increase in number, while the validation loss (LossV )
increased and accuracy in turn does not improve significantly before
attaining a plateau Fig. 9(a). Using the learning techniques in training
the DFCNet resulted in improved performance. Therefore, the valida-
tion loss is comparatively low and thus the validation accuracy was
improved notably as visible in Fig. 9(b). Optimization is done in order
to train the DFCNet to classify the dataset which was not annotated
(SPIE Challenge dataset). Random initialization caused the validation
loss (LossV ) to be within the range of 0.3–0.75 whereas the training loss
(LossT) was decreased to values approximately equal to zero and thus
achieved higher final accuracy than the (LossV ). The Shanghai hospital
No.6 dataset, RIDER, SPIE Challenge dataset showed the overfitting
issue as the dataset was comparatively smaller. The LIDC-IDR and
LUNA16 showed consistently better accuracy of classification. The re-
sults show that the proposed system DFCNet has suitable accuracy for
both annotated and non-annotated dataset.

The classification of the nodules into four stages was done using the
DFCNet, T4 stage nodules (malignant) average diameter davg was
17.4 mm and the diameter range was dmax 3.6 – dmin 29.3mm. In case of
T3 stage nodules, davg was 13.1mm and the diameter range was dmax
7.7 mm – dmin 26.4mm whereas davg of T2 was 9.56mm and the dia-
meter range was dmax 3.4 mm – dmin 15.3 mm. The T1 (benign nodules)
davg was 4.93mm and the diameter range was dmax 3.6mm – dmin
9.3 mm. The morphological features that were considered during the
stage classification of Nodule include the volume, density Hounsfield
units (HU) of the nodule, perimeter, area and the energy. Other high-
level features like sphericity, texture were added into homogeneity
attribute. Apart from these features, DFCNet was trained using the LISS
database with nine different classes. Nodule is malignant if there are
imaging signs of GGO, L, CV, PI classes while if there is BMP imaging
sign then it indicates benign nodule in lung, whereas BMP. The re-
maining three classes C, OP and AB, can be present both in benign or
malignant nodule. Furthermore, different classes of imaging signs can
be seen in a single nodule thus the final stage classification is obtained
considering all these features as well as these nine classes of imaging
signs. Table 5 shows the features for the stage classification of the no-
dules.

The performance of the DFCNet for the stage classification is done
by the help of confusion matrix. Fig. 10 shows the confusion matrix of
four stages of cancer classified by DFCNet. Table 6 gives the overall
recall and precision of the classification phase. For comparison of the
proposed work with the existing work, we randomly sampled 1700
images from the training dataset and used them for testing by the
trained fully convolutional neural network. Same dataset was used for
network model in [16] trained. Firstly, the features were extracted for
the fully connected network layer then the Gaussian Process Regression

Table 3
Dataset for training and testing.

Dataset Total CT-
Scans
cases

CT Scans
containing
nodules

Total
number of
nodules

Total number
of slices/
images

LIDC-IDRI
database [32]

1018 10,531 2669 244,527

RIDER [33] 46 197 47 15,419
SPIE challenge

dataset [38]
70 – – 22,489

LUNA16 [35] 888 9120 1186 551,065
LungCT-Diagnosis

[34]
61 634 121 4682

Shanghai Hospital
No. 6 dataset

18 184 24 3794
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Fig. 7. (a) Original image, (b) image filtered by Gabor, (c) ROI based segmented image.

Fig. 8. Performance of DFCNet and CNN on different
datasets.

Table 4
Performance evaluation of DFCNet on various dataset.

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) Average false positive

LIDC-IDRI database [32] CNN 77.61 75.35 80.59 4.4
DFCNet 86.02 83.91 89.32 2.9

RIDER [33] CNN 79.22 74.11 81.14 5.5
DFCNet 80.64 74.58 86.54 3.7

SPIE-Challenge dataset [38] CNN 73.75 75.65 79.15 4.6
DFCNet 84.87 81.22 82.97 3.5

LUNA16 [35] CNN 74.01 70.23 79.47 4.7
DFCNet 80.12 73.14 81.95 4.2

LungCT-Diagnosis [34] CNN 81.34 74.71 83.14 2.9
DFCNet 89.52 82.54 93.60 2.8

Hospital dataset CNN 79.67 75.23 86.46 2.0
DFCNet 86.32 83.67 96.17 1.17
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(GPR) was applied to these features. The images were forwarded to the
multi-view network to obtain the feature representation and afterward
processed by GPR. The results were compared with those obtained by
using CNN and Fully convolutional neural network. Table 7 shows the
performance comparison of proposed work and TumorNet. The overall
accuracy of TumorNet in case of LIDC-IDRI dataset was higher than the
accuracy of DFCNet by a factor of 1.39 whereas for the hospital dataset
DFCNet and TumorNet accuracies are 96.33 and 81.11, respectively.
The main reason behind this improved result of DFCNet was metastasis
features for the classification for which different wearable sensors were
used. The data collection for the metastasis features was done by using
the IoT based personalized health-care systems both clinical system and
remote monitoring system. The metastasis feature in addition to the

Table 5
Extracted features for stage classification.

Features Stage T1 Stage T2 Stage T3 Stage T4

Diameter davg 17.4mm 23.1 mm 55.56mm 81.93mm

Area 206 341 491 608
Perimeter 54.284 77.596 94.52 109.0122
Eccentricity 0.7270 0.6897 0.7909 0.9225
Entropy 0.0092379 0.014346 0.01967 0.023641
Contrast 0.0056 0.0101 0.0131 0.0165
Correlation 0.9271 0.9207 0.9286 0.9275
Energy 0.9983 0.9972 0.9960 0.9950
Homogeneity 0.999 0.998 0.998 0.997

Fig. 9. (a) Training loss (LossT ) vs number of iterations, (b) validation loss (LossV ) vs number of iterations.
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training dataset has significant results as compare to TumorNet.

5. Conclusion and future work

One of the benefits of IoT based health care systems is remote access
to medical images such as Lung cancer CT-Scan images. IoT services
have enabled that the data gathered by the remote machines can also be
used for investigating the patterns of the disease and thus disease
prediction could be done by using this data for training of CNN. In this
paper, we proposed a novel classifier based on deep fully convolutional
neural network. DFCNet is a generic classifier which can be used for
detection and classification of biomedical images. However, in this
paper DFCNet is used to detect and classify the pulmonary nodules in
the CT-Scan images. The initial classification was done into two classes
i.e. nodule (diseased-Malignant or Benign) and non-nodule (normal).
The images classified as nodules are further classified into four lung
cancer stages. In order to overcome the problem of limited dataset we
used data augmentation techniques. Data augmentation improved the
training of DFCNet and enabled it to capture more classification fea-
tures and learning parameters from enriched training dataset. For the

classification of nodule, it was necessary to have equal number of
training images in each class, data augmentation techniques were used.

Our method outperformed the existing research work on lung no-
dule detection. The performance of our proposed method was high even
in low-density small-sized pulmonary nodules. The average FP was 3.1
for the DFCNet which was improved to 2.79 using elimination tech-
nique. Proposed method used large number of training samples which
helped in the improving the performance on the dataset which was not
annotated. The limitation of the proposed work is using different da-
taset with varying scan parameters leading to FP results in case of
malignant nodules. Optimal classification results can be obtained if the
dataset has same scan parameters. Although using CT-Scan images ac-
quired from varying clinical environment provide more challenging
classification for the DFCNet yet improved performance can be
achieved using dataset with homogeneous scan parameters.
Experimental results and our analysis show that DFCNet achieves better
performance than state-of-the-art methods TumorNet. In future, we will
focus on using DFCNet for other biomedical images such as MRI for
detection and classification of diseases namely breast cancer, brain
tumor, colon cancer and diabetic retinopathy. We will detect lung no-
dule with the proposed method using unseen dataset for testing. Future
IoT enabled healthcare methods will be used which aim to provide
highly-customized access to rich medical information particularly lung
CT images and efficient clinical decision making by the lung cancer
CAD system to each individual with unobtrusive and successive sensing
and monitoring. The proposed IoT-enabled CAD system could be used
for the detection of other types of cancer as DFCNet is a generic method
for detection.
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